
Welcome from West Virginia Rivers Coalition!

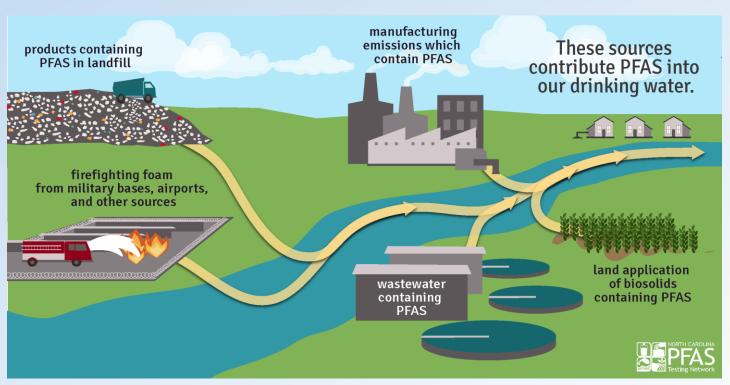
Agenda & Housekeeping

Agenda for Today:

- Welcome & Introductions
- Presentations
 - Jenna Dodson, WV Rivers Coalition
 - Dr. Alan Ducatman, WVU
 - Delegate Evan Hansen, WV House of Delegates & Downstream Strategies
 - Scott Mandirola, WVDEP
- Questions & Answers

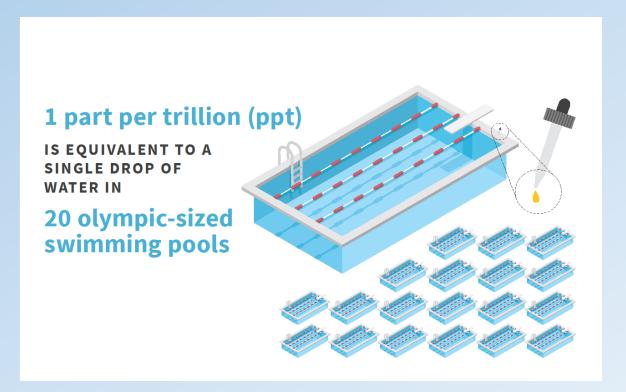
Housekeeping:

- Please keep yourself muted during the presentations, until we open the floor for questions.
- We ask that you hold all questions until the end so our presenters may answer collaboratively.
- You may place your questions into the chat during the presentation, or raise your hand at the start of the Q&A.


Jenna Dodson

Staff Scientist West Virginia Rivers Coalition

What are PFAS and how do they get into drinking water?


- Per- and poly-fluoroalkyl substances (PFAS) group of man-made chemicals
- 10,000-12,000 types of PFAS
- "Forever chemicals" that don't break down in the environment
- Used in manufacturing since the 1950s for non-stick, stain resistant, water resistant properties
- Examples of products with PFAS:
 - Non-stick cookware
 - Firefighting foam
 - Carpet
 - Food packaging

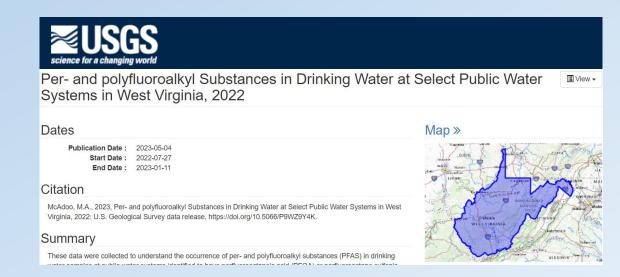
EPA's Draft Drinking Water Standards (MCLs)

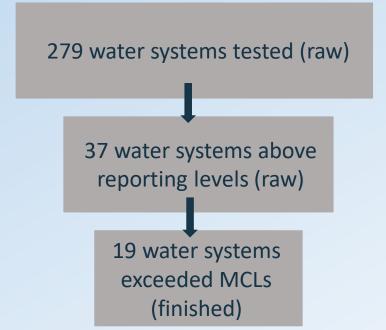
• PFOS: 4 ppt

• PFOA: 4 ppt

GenX, PFBS, PFNA, PFHxS: Hazard Index = 1.0

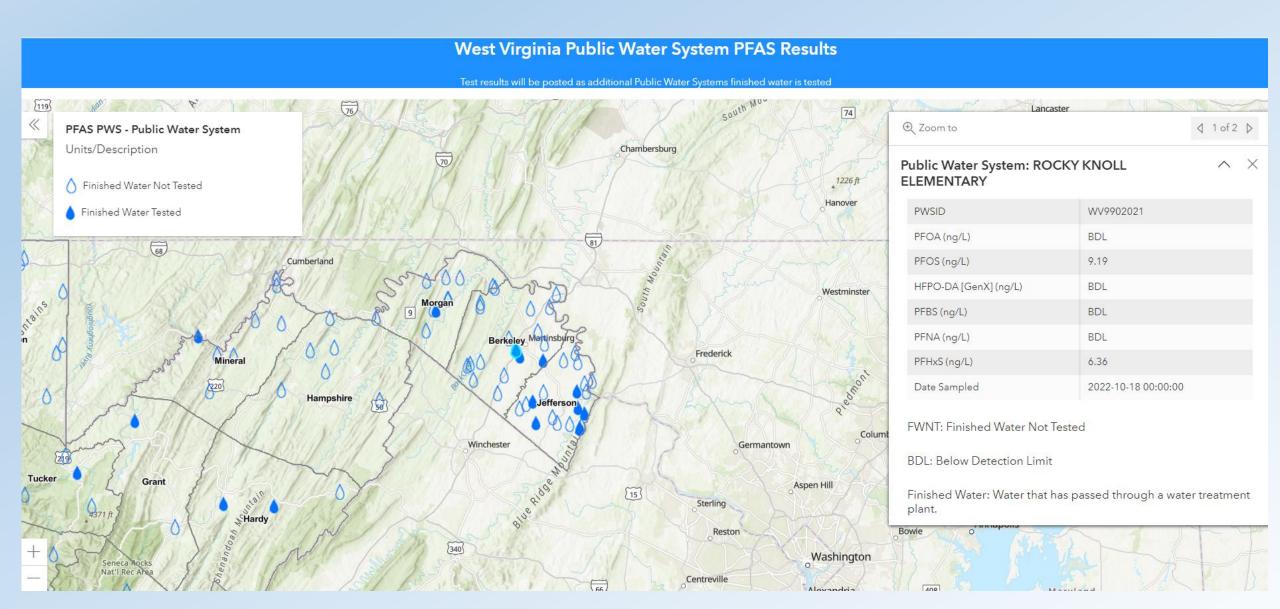
Hazard Index =
$$\left(\frac{\text{GenX}}{10 \text{ ppt}}\right) + \left(\frac{\text{PFBS}}{2000 \text{ ppt}}\right) + \left(\frac{\text{PFNA}}{10 \text{ ppt}}\right) + \left(\frac{\text{PFHxS}}{9 \text{ ppt}}\right)$$




PFAS in Raw & Finished Drinking Water in WV

Prepared in cooperation with the West Virginia Department of Environmental Protection, Division of Water and Waste Management and the West Virginia Department of Health and Human Resources, Bureau for Public Health

Occurrence of Per- and Polyfluoroalkyl Substances and Inorganic Analytes in Groundwater and Surface Water Used as Sources for Public Water Supply in West Virginia



Water Systems with PFAS Exceeding Draft MCLs

Public Water System Name	Sample Date	PFOA	PFOS	HFPO-DA (GenX)	PFBS	PFNA	PFHxS	Hazard Index Preliminary Calculation	Units/Description
BENWOOD WATER DEPARTMENT	12/5/2022	BDL	8.56	BDL	5.32	BDL	21.4	2.38	ng/L (BDL=Below Detection Limit)
BLUE RIDGE ELEMENTARY	10/17/2022	3.72	5.9	BDL	BDL	6.51	BDL	0.65	ng/L (BDL=Below Detection Limit)
CHESTER	12/6/2022	BDL	12.2	BDL	2.65	BDL	9.47	1.05	ng/L (BDL=Below Detection Limit)
DEPARTMENT OF VETERANS									
AFFAIRS	10/17/2022	BDL	34.3	BDL	2.09	BDL	22	2.45	ng/L (BDL=Below Detection Limit)
FAIRVIEW TOWN OF	12/16/2022	BDL	4.41	BDL	BDL	BDL	3.3	0.37	ng/L (BDL=Below Detection Limit)
GLEN DALE WATER WORKS	12/5/2022	BDL	7.87	BDL	3.2	BDL	11.8	1.31	ng/L (BDL=Below Detection Limit)
HARPERS FERRY CAMPSITES-									
CARDINAL	11/14/2022	5.48	11	BDL	5.89	BDL	13	1.45	ng/L (BDL=Below Detection Limit)
HUGHES RIVER WATER	10/12/2022	8.57	2.12	BDL	DDI	BDL	BDL	0	ng/L/RDL-Polous Detection Limit)
	10/13/2022	2.77	BDL	34	BDL			0 3.4	ng/L (BDL=Below Detection Limit)
LUBECK PSD	8/1/2022			-	BDL	BDL	BDL		ng/L (BDL=Below Detection Limit)
NEW HAVEN WATER DEPT PARKERSBURG UTILITY BOARD	2/1/2022	6.81 12	<1.97	<4.92 BDL	<1.97	BDL	BDL BDL	0	ng/L (BDL=Below Detection Limit)
	2/1/2022		3.33		4	4		0.002	ng/L (BDL=Below Detection Limit)
ROCKY KNOLL ELEMENTARY SAINT MARYS	10/18/2022	BDL	9.19	BDL	BDL	BDL	6.36	0.71	ng/L (BDL=Below Detection Limit)
SHENANDOAH MINI HOMES	8/2/2022	5.8	BDL	BDL BDL	3.33	BDL BDL	2.11 4.22	0.24 0.47	ng/L (BDL=Below Detection Limit)
	12/14/2022	2.13	11.6		2.18				ng/L (BDL=Below Detection Limit)
SOUTH JEFFERSON ELEMENTARY	10/17/2022	3.64	7.81	BDL	2.84	4.02	BDL	0.4	ng/L (BDL=Below Detection Limit)
UNION WILLIAMS P S D	8/2/2022	5.22	BDL	BDL	2.46	BDL	BDL	0.0012	ng/L (BDL=Below Detection Limit)
WALNUT GROVE UTILITIES	11/14/2022	BDL	9.3	BDL	2.5	BDL	3.07	0.34	ng/L (BDL=Below Detection Limit)
WEIRTON AREA WATER BOARD	12/6/2022	2.52	6.43	BDL	BDL	BDL	7.58	0.84	ng/L (BDL=Below Detection Limit)
WILLIAMSTOWN WATER DEPT	8/1/2022	27.8	BDL	BDL	8.49	BDL	18.3	2.04	ng/L (BDL=Below Detection Limit)

Public Water System PFAS Results Map

Resources

- USGS PFAS in Drinking Water at Select Public Water Systems in West Virginia, 2022
 - https://www.sciencebase.gov/catalog/item/6401ff0dd34e6929881229c1
- WV DHHR Finished Water Sampling Results MCL Exceedances Table
 - https://oehs.wvdhhr.org/media/aotbii4w/pfas-finished-water-sampling-results_mcl-exceedances.pdf
- WV DHHR Public Water System PFAS Results Map
 - https://oehsportal.wvdhhr.org/pwspfas/
- WV DHHR
 - https://oehs.wvdhhr.org/eed/source-water-assessment-wellhead-protection/
- EPA's Proposed PFAS Drinking Water Regulation Frequently Asked Questions and Answers
 - https://www.epa.gov/system/files/documents/2023-04/Public%20FAQs PFAS NPDWR Final 4.4.23.pdf
- EPA's How to Calculate the Hazard Index
 - https://www.epa.gov/system/files/documents/2023-03/How%20do%20I%20calculate%20the%20Hazard%20Index. 3.14.

Dr. Alan Ducatman

Professor emeritus West Virginia University

Alan Ducatman, MD, MS

Professor emeritus, West Virginia University aducatman@hsc.wvu.edu

Washington Works, WV

Declarations:

- Contributed to Design; Led Participant Health communications for "C8 Health Project" in contaminated water districts, WV and Ohio beginning 2005
- <u>COI declaration</u>: participate as paid and unpaid consultant to communities seeking medical monitoring benefits following PFAS water contamination

Array of Historic Sources, Uses

Surfactants/Dispersants; Industrial manufacturing Aid in numerous commercial products:

Food packaging (including pet food). Food preparation bags. Example: microwave popcorn

Medical device (including coatings for stents), eyedrops, contacts, implantable surface coat

Home barrier insulation and specialty paints – future spray on roof applications proposed

Specialty Paper coatings – "Take out" and disposable plates/containers, pizza box,

Treatments for Fabrics and Carpets, Outdoor wear and Leather

Adhesives (including carpet backing)

Ski wax, bike lube

Electronics, solar panels, elastomeric coating for electrical cables.

Cleaners, treatments: gun cleaners, chain cleaners, engine coaters, auto detailing, piano tuning (2 uses)

Hydraulic fracturing lubricant and tracer technology

Chrome plating and photolithography

AFFFs – most prevalent source in groundwater and drinking water, may contain a complex mixture, and each batch can vary to meet a standard ("MilSpec")

Shaving, cosmetics, flosses

C8 Science Panel 2005-13

(PFOA-contaminated water, N=69,030, and literature review)

There are now > 1000 peer review papers concerning this chemical class, human exposures, and health effects

- "Probable Link" Findings
 - Hypercholesterolemia¹
 - Thyroid Disease²
 - Ulcerative Colitis²
 - Testicular Cancer
 - Kidney Cancer¹
 - Pregnancy-induced Hypertension

1. Substantially Increased Evidence since 2015 2. Nuances since 2015

Examples of Outcomes other than probable links that have become clearer since the Science Panel Deliberated

Liver Disease

Hyperuricemia

California Basis for PFAS Health Goals

	PFOA	PFOS
Health Effects in Humans	 Kidney cancer Liver toxicity Immune system toxicity Increases in cholesterol Suggestive evidence of preeclampsia 	Increases in cholesterol Immune system toxicity Suggestive evidence of preeclampsia
Health Effects in Animals	 Liver, pancreatic, and testicular cancer Liver toxicity Immune system toxicity Thyroid toxicity Developmental and reproductive toxicity 	 Liver and pancreatic cancer Liver toxicity Immune system toxicity Thyroid toxicity Developmental and reproductive toxicity

PFAS Outcome Examples – my View

Strong Evidence

Immunotoxicity, vaccine uptake

Lipids /Sterol interference, Associated Codeable conditions and longitudinal diagnoses and medications

Kidney cancer

Liver Functions and Steatosis

Thyroid Alterations/Binding proteins

Uric Acid - Hyperuricemia/Gout

Birthweight

Substantial Evidence

Breast Feeding, diminished capability

Insulin Resistance/Diabetes

Kidney Disease

Osteoporosis

Preeclampsia/PIH

Testicular Cancer

Some or conflicting evidence

Asthma, Allergy

Cardiovascular/BP

Childhood adiposity

Fecundity diminished (with physiology evidence for ovarian, testicular function and sperm morphology motility)

Liver cancer & Breast cancer

Infections, notably in early childhood

Thyroid disease

Developmental: Intrauterine Growth Retardation (IUGR), Preterm birth

Ulcerative Colition WEST VIRGINIA RIVERS

Clinician-Patient Communications About Exposures and Health

AHRQ SOCIO ECOLOGICAL MODEL for Prevention

CLINICAL MODEL

*Others Interested (and Influencing); Water manager, well owner, insurers, health/environment agencies,

.

Patient Provider Shame & Time discomfort constraints Health Fear & Authority beliefs & anxiety figure values Stress Culture Frustration English · Level of Personality language Language interest & proficiency curiosity Power Education dynamic level

Our Most Difficult Communication Group

Water utility managers are:

- Caught in the middle
- Worried about another large task, and
- (In)sufficient Funds to do the task and
- Costs that will be passed to consumers

Evan Hansen

Delegate, West Virginia House of Delegates Principal, Downstream Strategies

Scott Mandirola

Deputy Cabinet Secretary,
West Virginia Department of
Environmental Protection (WVDEP)

Questions?

We will take questions asked in the chat first.

Please raise your hand if you would like to be called on to ask your question aloud to the presenters.

Thank you for joining us!

Please look out for the follow up email, which will include the recording from today's meeting and any resources discussed. You can join our mailing list at wvrivers.org and any additional questions can be directed to wvrivers@wvrivers.org.

